Everything you always wanted to know about the ECS  but were afraid to ask.

The Endocannabinoid system was only discovered in the past 25 years but the impact of that discovery has revolutionized brain science and furthered the scientific understanding of the human nervous, endocrine, metabolic, immune etc systems. The following article from MedicalMarijuanainc.com goes into the history and details about its discovery and how it works.

Have you ever wondered how cannabinoids interact with your body? The answer is through the endocannabinoid system.

The endocannabinoid system is responsible for regulating balance in our body’s immune response, communication between cells, appetite and metabolism, memory, and more. In spite of the integral role this system takes on, until recently it remained an unknown part of the human body’s functions.

Named for the plant that inspired its discovery, the endocannabinoid system is important to your overall health and equilibrium, but its importance is only just becoming understood by the medical community. It is through this system that the naturally occurring cannabinoids from medical marijuana interact with our bodies and trigger its beneficial effects. With the potential to greatly affect the way our bodies work, a healthy endocannabinoid system is essential and it’s key that we recognize how to maintain it.

The History of the Endocannabinoid System

Across cultures and building through the 19th century, extractions of the cannabis plant were widely used for a number of medicinal purposes. However, following practical prohibition of the cannabis plant in 1937 by the U.S. government for fear of abuse of its psychoactive properties, the medical use, experimentation, and study of cannabis were eliminated, stalling the progress of our understanding of the endocannabinoid system and the possible medical effects of cannabis. For nearly 50 years, marijuana fell from popular pharmacopeia and was labelled as illicit in the minds of Americans.

Then the endocannabinoid system was defined in the early 1990’s when Lisa Matsuda announced that her team at the National Institute of Mental Health had first identified a THC-sensitive receptor in lab rat brains.  Source: The Endocannabinoid System – An Overview

How Do Cannabinoids Actually Work on the Human Nervous System?

The most interesting aspect of the cannabis plant is the number of cannabinoids that it produces and that support and improve human health. Why do these receptors exist in the human system at all and how is it possible that this plant contains the molecules that connect to these receptors?

The endocannabinoid system (ECS) is a biological system composed of endocannabinoids, which are endogenouslipid-based retrograde neurotransmitters that bind to cannabinoid receptors, and cannabinoid receptor proteins that are expressed throughout the mammalian central nervous system (including the brain) and peripheral nervous system. The endocannabinoid system is involved in regulating a variety of physiological and cognitive processes including fertility,[1]pregnancy,[2] during pre– and postnatal development,[3]appetite, pain-sensation, mood, and memory, and in mediating the pharmacological effects of cannabis.[4][5] The ECS is also involved in mediating some of the physiological and cognitive effects of voluntary physical exercise in humans and other animals, such as contributing to exercise-induced euphoria as well as modulating locomotor activity and motivational salience for rewards.[6][7][8][9] In humans, the plasma concentration of certain endocannabinoids (i.e., anandamide) have been found to rise during physical activity;[6][7] since endocannabinoids can effectively penetrate the blood–brain barrier, it has been suggested that anandamide, along with other euphoriant neurochemicals, contributes to the development of exercise-induced euphoria in humans, a state colloquially referred to as a runner’s high.[6][7]

Two primary endocannabinoid receptors have been identified: CB1, first cloned in 1990; and CB2, cloned in 1993. CB1 receptors are found predominantly in the brain and nervous system, as well as in peripheral organs and tissues, and are the main molecular target of the endocannabinoid ligand (binding molecule), Anandamide, as well as its mimetic phytocannabinoid, THC. One other main endocannabinoid is 2-Arachidonoylglycerol (2-AG) which is active at both cannabinoid receptors, along with its own mimetic phytocannabinoid, CBD. 2-AG and CBD are involved in the regulation of appetite, immune system functions and pain management.[10][11][12]